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ABSTRACT: PCA is often used to reduce the size 

of variables or to compress data. In this article, we 

use PCA to create a diagnostic for a solar-powered 

energy generation system. The idea is to represent 

the system's data in a graph with reduced 

dimensions to get a good representation of the data 

set and also to be able to interpret the behavior of 

the variables in this new representation. 

The system has five potential variables that are not 

easy to plot. In this article, we plot the variables in 

two dimensions and interpret their behavior as a 

diagnosis.. 

KEYWORDS:PCA, fault detection, PV, 

photovoltaic. 

 

I. INTRODUCTION 
Principal component analysis (PCA) is a 

multivariate statistical technique [1]. Multivariate 

statistical techniques are powerful tools capable of 

compressing data and reducing their dimensionality 

[2] so that the essential information is preserved and 

easier to analyze than in the original dataset. These 

techniques can also manipulate noise and correlation 

to extract information effectively. The main function 

of this type of technique is to convert some 

correlated variables into a smaller set of 

uncorrelated variables through a mathematical 

procedure. 

PCA is essentially based on an orthogonal 

decomposition of the covariance matrix of the 

process variables along the directions that explain 

the maximum variation of the data [3], i.e., this 

method looks for a projection of the observations on 

orthogonal axes. As a result, the first axis contains 

the largest variation. The second axis has the second 

largest variation orthogonal to the first. 

The PCA's main goal is to find a set of 

factors (components) that are smaller in size than 

the original set of data and that can accurately 

describe the main trends [4]. 

In this article, we present the general 

principle of PCA, then how the variables are 

involved in constructing the axes, and then, see how 

to make the diagnosis. 

 

II. PRINCIPLE OF PRINCIPAL 

COMPONENT ANALYSIS 
The main interest of the ACP is to offer the 

best visualization of the multivariate data, by 

identifying the hyperplanes in which the dispersion 

is maximum, thus highlighting with the maximum 

precision the relations of proximity and distance 

between the variables [5]. The PCA consists of 

replacing a family of variables with new maximum 

variance variables uncorrelated and which are linear 

combinations of the original variables. These new 

variables, called principal components (CPs), define 

factorial plans that serve as a basis for a flat 

graphical representation of the initial variables. 

Variables are usually expressed in units of 

measurement and scales. For this, it is preferable to 

carry out a PCA on a centered and reduced X matrix 

(columns of zero means and standard deviations 

units). The orthogonal space defined by the ACP is 

generated by the eigenvectors associated with the 

eigenvalues λa of the correlation matrix Σ of X. So, 

x ∈ℝm
 is a random data vector consisting of m 

variables. Let the data matrix X ∈ℝnxm
 of line 

vectors xi
Twhich collects the n measurements on the 

m variables. 

 

The ACP determines an optimal (versus a 

variance criterion) and linear transformation of the 

data matrix X as follows: 

 

X = TPT  (1) 
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Where T = [t1 t2 . . . tm] ∈ℝnxm
, where the 

vectors ta are called scores or CPs and the matrix P 

= [p1 p2 . . . pm] ∈ℝnxm
, where the orthogonal 

vectors pa are the eigenvectors associated with the 

eigenvalues of the correlation matrix Σ of X: 

 

Σ = PΛPTavec PPT =  PTP =  Im  (2) 

 

Where Λ = diag(1 . . . m) is a diagonal 

matrix whose elements are put in decreasing order. 

Since the objective of the PCA is to reduce the size 

of the space, the first CPs (l      m) is the most 

significant and sufficient to explain the variability of 

a process through its X database. Therefore, the 

partition into eigenvectors and principal components 

gives respectively: 

 

P =  P l P m−l , T =   T l T m−l  (3) 

 

The l first eigenvectors constitute the 

representation subspace or the main subspace (SP) 

defined by: Sp  =spanP .  While the residual 

subspace, denoted SR, is described by: Sr  

=spanP m−l .  These two sub-spaces, Sp and Sr, are 

orthogonal. An observation vector x is projected 

onto the new space and decomposes on the two 

subspaces SP and SR respectively as follows: 

 

x = P lP l
Tx = C x ∈ Sp  (4) 

x = P m−lP m−l
T x = C x ∈ Sr  (5) 

x Tx =  x Tx = 0 et x = x +  x  (6) 

 

Where x  and x  are respectively the 

projection of x on the two subspaces SP and SR 

respectively generated by the first CPs and the 

remaining (m-l).C  and C  = (1- C ) represent the 

projection matrices respectively on the SP and the 

SR. Note that the matrix C  is not equal to the 

identity matrix. If a value of this matrix is close to 1, 

this means that the corresponding variable is not 

correlated with the others, and therefore it is 

estimated from its measure (this variable is 

projected completely on the SP). 

  

III. FAULT DETECTION 
In this section, we discuss the 

implementation of the fault detection method for a 

solar power system (SPS). This requires an 

inventory of individuals described by quantitative 

variables to be studied. In fact, we are mainly 

interested in the output variables of SPS, including 

voltage, current and power, as well as the variables 

that mainly affect the behavior of the system, 

including temperature and irradiation. 

The goal is to see, in a symmetrical way, 

the similarity of these variables with those that 

provide almost identical information. This leads us 

to see the connection between these variables by 

studying the correlation. And the most important 

thing is that we are able to make the data set formed 

by each one much more readable and interpretable 

in a graph. 

Incidentally, let us consider the system 

subjected to the sunshine shown in Fig. 1a. The 

output variables are shown in Figs. 1b, 1c, and 1d, 

respectively 
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Fig. 1: Output of the PV module for a given sunshine 

 

We studied all the data collected for one hour with a sampling interval of one minute. 

 

The eigenvalue graph with the percentage of inertia associated with each dimension is given in Fig. 2. 

 
Fig. 2: Graph of the eigenvalues 

 

From this figure, it can be said that the 

projections of the individuals on the two axes are 

highly significant (at 100%). Indeed, the percentage 

of inertia explained by the first dimension is 

94.88%, which means that 94.88% of the 

information is represented by axis 1, and the second 

dimension expresses 5.12% of the information. 

Since the axes are ordered, it is thus possible to add 

the percentage of inertia of these axes, and then axis 

1 and axis 2 express all the continuous information 

in the data set. 

This means that if the initial variables of 

the dataset are summarized by two dimensions, all 

the information contained in the dataset is still 

recovered. We consider subsequently the two main 

components whose irradiance as the first component 

(denoted by Dim1 later) and the current as the 

second component (denoted Dim2 hereinafter). 

 

The result of the PCA of all these data is given in 

the following figures (Fig. 3 and 4). 
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Fig.3:Individuals Graph for healthyoperation 

 
Fig.4: Graph of variables in 

healthyoperation 
  

Individuals are the data points of 

measurement, here, from 6:07 to 7:07. We are 

particularly interested in the behaviour of 

individuals marked in blue. In fact, it is during this 

interval of time that we inserted, the fault to be 

monitored, is the subject of the following paragraph. 

We have implemented several scenarios of 

defects (shading) to see how the system will react. 

The following figure 5 shows the projection of 

individuals according to the ACP method for each 

scenario. 

 

 
Fig. 5: Graph of individuals in faulty operation 

 

To interpret these results, we need to 

know each axis is chosen and each cloud of 

variables that participates most in the formation of 

the axis. The participation of a variable in the 

formation of the axis results in the square of the 

correlation between the variable and the axis 

divided by the sum of the correlations between the 

variables and the axis as equation 7 shows [3, 4]. 

 

CTRs k =
r(xk , vk)2

 r(xk , vk)2K
k=1

 (7) 

 

The summary of the results of the PCA we have done is given in Table 1. 
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Table 1: Contribution of variables to the constitution of the axis and quality of representation 

 

Variables Dim.1 cos2 Dim.2 cos2 

Irradiation 0.994 0.988 -0.110 0.012 

Current 0.994 0.988 -0.111 0.012 

Voltage 0.993 0.986 -0.119 0.014 

Power 0.932 0.968 0.363 0.132 

Temperature 0 NaN 0 Inf 

 

With: 

 Dim.1: coordinate of the variable on axis 1. 

 Dim.2: coordinate of the variable on axis 2. 

 cos2: The quality of the representation of a 

variable along a main axis is given by the 

square of its correlation coefficient with this 

axis and represents the squared cosine 

 

cos2 = cor × cor (8) 

 

For each PCA done, the result is always 

the same, ie, the power has a significant value in 

the formation of the first component and it 

contributes to the formation of the second 

component; While current and voltage contribute 

strongly to the formation of the first component, 

but they contribute less to the formation of a 

second. 

So, the loss of power in the presence of 

defects results in the translation of the individuals 

with respect to axis 1 and also slightly with respect 

to axis 2. Thus, this phenomenon will help us to 

detect the manifestation of a defect translating into 

a loss of power in the system. 

 

IV. CONCLUSION 
This paper presents a tool for fault 

detection using principal component analysis. The 

variables observed are the current and the 

temperature, since these are the two most weighty 

variables. The approach presented is to observe the 

sliding of the individuals on the principal axes, and 

it was found that the more consistent the error, the 

more the individuals move away. We can conclude 

that with ACP we were able to quantify the 

occurrence of defects. 
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